Simultaneous Improvement and Genetic Dissection of Drought Tolerance Using Selected Breeding Populations of Rice

نویسندگان

  • Yanru Cui
  • Wenying Zhang
  • Xiuyun Lin
  • Shizhong Xu
  • Jianlong Xu
  • Zhikang Li
چکیده

Drought is the most important factor limiting rice yield in most rainfed areas of Asia and Africa. Four large BC2F2 populations consisted of 3,200 individuals, which were derived from crosses between an elite Geng variety, Jigeng88, and four donors from three different countries, were screened and progeny tested under severe drought stress, resulting in the development of 72 introgression lines (ILs) with significantly improved yield compared to the recurrent parent Jigeng88. These DT ILs plus four random populations (without drought selection population) from the same crosses were evaluated in replicated trials under both drought stress and non-stress conditions in two environments, and characterized with simple sequence repeat (SSR) markers to understand how directional selection was operating on the genetic variation of DT of rice. Thirteen DT QTLs of large effect were identified based on the significant allelic and genotypic frequency shits in the DT ILs by using the joint segregation distortion method. The 13 QTLs were validated by the genotypic differences at individual QTL in the random populations. Putative genetic networks consisting of 30 loci in 29 functional genetic units underlying DT were detected by X2 tests and non-random associations between or among DT loci in DT ILs from the four populations. Most large-effect DT QTLs were previously reported and located in the upstream of the genetic networks as putative regulators, and were either mapped to important regulatory genes for DT or drought responsiveness reported previously. In our study, five promising ILs with significantly improved yield were selected under both drought and normal irrigated conditions. The QTLs and their genetic networks underlying DT detected provided useful genetic information for further improving DT and yield using designed QTL pyramiding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Genetic Dissection and Simultaneous Improvement of Drought and Low Nitrogen Tolerances by Designed QTL Pyramiding in Rice

Drought and low nitrogen are the most common abiotic stresses limiting rice productivity in the rainfed rice areas of Asia and Africa. Development and adoption of green super rice (GSR) varieties with greatly improved drought tolerance (DT) and low nitrogen tolerance (LNT) are the most efficient way to resolve this problem. In this study, using three sets of trait-specific introgression lines (...

متن کامل

ارزیابی کمی و مولکولی تحمل به تنش خشکی ژنوتیپ‌های برنج

Breeding of rice for drought tolerance requires proper evaluation and analysis of genetic diversity in breeding populations related to drought tolerance. In order to identify indices for tolerant and sensitive rice genotypes to drought stress, an experiment with 59 genotypes of rice was conducted based of a complete block design with three replications in non-stressed (flooding) and stressed co...

متن کامل

Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L.) by Designed QTL Pyramiding

Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding "Green Super Rice" varieties with signific...

متن کامل

Genetic and genomic tools to improve drought tolerance in wheat.

Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018